If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12m^2+132m=0
a = 12; b = 132; c = 0;
Δ = b2-4ac
Δ = 1322-4·12·0
Δ = 17424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{17424}=132$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(132)-132}{2*12}=\frac{-264}{24} =-11 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(132)+132}{2*12}=\frac{0}{24} =0 $
| -6{m+1)=24 | | 12x=1.5 | | X∆-4x-5=0 | | 5x/6-2x/3-1/3=4/5 | | 2.7a-3(4.9+3a)=5.1-6.3a | | X^2+3x-3/x-1/x^2=0 | | 1/3x+1/4=1/3-2/3x+1/3 | | 4.8q-2.6-5.9q=-0.1q-2.6 | | x+1÷2=8 | | 4t+2+3t-6t=2+2 | | 3x+2/8=2x-5/7 | | (7n+9)(n+7)=47 | | 8y-43-7y=-15 | | X^4+10x^2=-9 | | 9x^2-69x-42=0 | | h(10)=1/10 | | 6w-2=-2(w+9) | | 3,807=47(p+25) | | z^2+16=-25 | | 4/3x+x^2-3x-4/3x=1 | | (z+4)^2=-25 | | (z+4)^=-25 | | 7f-4-10f=-4f-2 | | (3v-7)(3-v)=0 | | 19/4x=-76 | | 4x-9=72-5x | | 16x-8=4x+2 | | 12x+18x-9+5=-6x+5-9 | | 6u+2=9u=14 | | 5x-(4x+3)=2x-26 | | 12x+18x-9+5=-6x+-9 | | 2x+7=-2x+9 |